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Abstract: Recent conservation planning studies bave presented approaches for integrating spatially refer-
enced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the
growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social
survey methods such as choice experiments and public participation geographic information systems. Elicited
SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and
assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty
which describes bow social survey uncertainty propagates when projected spatially and the importance of
accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate
when elicited SRS data is integrated with biophysical data for conservation planning and may bave important
consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted
a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly
tested for, but that these uncertainties were ignored when projected spatially. Based on these results we
developed a framework which will belp researchers and practitioners estimate social survey uncertainty and
use these quantitative estimates to systematically address uncertainty within an analysis. This is important
when using SRS data in conservation applications because decisions need to be made irrespective of data
quality and well characterized uncertainty can be incorporated into decision theoretic approaches.
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Resumen: Estudios recientes de la planeacion de la conservacion ban presentado estrategias para integrar
datos sociales con referencia espacial (SRE) con miras a mejorar la viabilidad de las acciones de conservacion.
Revisamos la creciente literatura de conservacion sobre los datos SRE, enfocdndonos en las preferencias
obtenidas o mencionadas derivadas de métodos de encuestas sociales como los experimentos de opcion y
los sistemas de informacion geogrdfica de participacion piiblica. Los datos SRE obtenidos incluyeron a la
distribucion espacial de la disposicion de vender, de pagar, de actuar y evaluaciones de los valores culturales
y sociales. Desarrollamos una tipologia para evaluar la incertidumbre de los datos SRE obtenidos, la que
describe como la incertidumbre de las encuestas sociales se propaga cuando se proyecta espacialmente y
la importancia de responder a la incertidumbre espacial como los efectos de escala y la calidad de datos.
Estas incertidumbres se propagardn cuando los datos SRE obtenidos se integren con datos biofisicos para la
Pplaneacion de la conservacion y pueden tener consecuencias importantes para evaluar la viabilidad de las
acciones de conservacion. Para explorar mds a fondo este tema, llevamos a cabo una revision sistemdtica de
la literatura sobre datos SRE obtenidos. Encontramos que la incertidumbre de encuestas sociales se probaba
comiinmente, pero que estas incertidumbres se ignoraban al proyectarse espacialmente. Con base en estos
resultados desarrollamos un marco de trabajo que ayudara a los investigadores y a los practicantes a estimar
la incertidumbre de las encuestas sociales y a usar estos estimados cuantitativos para sefialar sistemdticamente
a la incertidumbre dentro de un andlisis. Estos es importante cuando se usan datos SRE en aplicaciones de la
conservacion ya que las decisiones deben tomarse sin importar la calidad de los datos y una incertidumbre
bien caracterizada puede ser incorporada a las estrategias de decision teorica.

Palabras clave: calidad de datos espaciales, evaluacion de la conservacion sistemadtica, incertidumbre espacial,
investigacion social, oportunidad de conservacion, planeacion de la conservacion, SIG de participacion publica,

valores obtenidos

Introduction

One of the great challenges to conservation planning
is accounting for the feasibility of conservation actions,
which requires an understanding of the complex social,
economic, and institutional environments in which con-
servation occurs (Knight et al. 2006). Recent conserva-
tion planning studies have presented tools for utilizing
mapped quantitative social data with the view toward
quantifying opportunities for conservation interventions.
Although tools for assessing conservation opportunities
have considered social and cultural values (Brown 2012),
governance characteristics (Mills et al. 2013), and self-
reported behavior (Curtis et al. 2005; Raymond & Brown
2011) these tools rarely consider the uncertainties as-
sociated with mapping these attributes. This can have
the perverse result of recommending actions that have
neutral or even negative conservation outcomes.

There are numerous methods for deriving mapped so-
cial data for conservation planning. These range from
modeling preferences based on land use (Goldberg et al.
2011), property prices (Polyakov et al. 2015), or travel
costs (Van Berkel & Verburg 2014) to implicitly integrat-
ing social values using interactive GIS software (Lesslie
2012) (Fig. 1). We focused on a subset of those methods
where data on elicited or stated preferences are derived
through social science survey methods which could be
or are used directly in a spatial context for conservation
planning. Social survey methods include the use of survey
techniques to assess general community values, attitudes,
and beliefs (see Babbie [2007] for an overview), and the
use of public participation GIS (PPGIS) to assess place-
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based values and preferences (e.g., Brown 2005), and
choice experiment (e.g., Campbell et al. 2009) (Fig. 1).
Hereafter we refer to data collected and then mapped
derived from elicited social survey methods for conserva-
tion planning as elicited spatially referenced social (SRS)
data. These methods are used in the majority of research
where mapped social data are incorporated into conser-
vation planning.

Given that the use of elicited SRS data within conser-
vation planning is a growing area of research, it is an
opportune time to evaluate the methods and associated
uncertainty that results from the use of mapped social
data in conservation planning. In broad terms, we define
uncertainty as sources of uncertainty within the inputs,
outputs, and analysis that may be measureable (e.g., GPS
error); related to difficult-to-define concepts; related to
future events that are difficult to predict; and related to
uncertainty in models associated with a lack of knowl-
edge or due to generalizations (see extended definition
in Supporting Information). In the social sciences, the
uncertainties associated with the collation of social data
are well documented and include measurement validity,
response bias, and representativeness (Haslam & McGarty
2001; Hair et al. 2009). Further, the spatial and ecolog-
ical sciences have characterized a suite of uncertainties
associated with mapping and modeling of spatial data,
including scale issues and classification error (Devillers
& Jeansoulin 2010; Lechner et al. 2012a; Rocchini et al.
2012).

Uncertainty in SRS data is especially concerning
because it can compound existing uncertainty present
within biophysical data such as species distribution
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Figure 1. Methods for assigning preferences to spatially referenced social data (Supporting Information for full
version with examples) (dotted-line rectangle, scope of review).

models and when used within systematic conservation
planning (SCP) tools. Combining SRS data with biophys-
ical data may result in greater levels of uncertainty as
these multiple forms of uncertainty may interact (e.g.,
Lechner et al. 2013) and multiply (e.g., Langford et al.
2011). For example, using simulated data Visconti et al.
(2010) found that data on vulnerability to habitat loss
should only be included in SCP when uncertainty in
this data is <20-30%. They showed that with greater
uncertainty it was counterproductive to utilize this data
and better results could be obtained using biodiversity
value alone. A key motivation for including SRS data is
to make plans more implementable, but data uncertainty
could result in less accurate or implementable plans—the
direct opposite of the desired outcome.

We addressed the question of how to manage uncer-
tainties in SRS data by identifying the types of social data
analyzed and the common types of geospatial processing
methods used for creating elicited SRS data; developing
a typology of SRS data uncertainty based on a review of
the types of uncertainty identified in the social and spa-
tial science literatures associated with the social survey
and geospatial methods used; reviewing whether existing
conservation planning studies are addressing SRS data
uncertainty as defined by the typology; and using the
results of the reviews to develop a process for more effec-
tively managing uncertainty issues in future conservation
planning studies. We also considered research directions
required to systematically address these uncertainties and
the implications this has for conservation planning in
general.

Geospatial Methods for Deriving Elicited SRS Data

We focused specifically on elicited SRS data which meets
all the following criteria: one of the final outputs is a
map describing individual preferences elicited directly

through social science survey methods for use in con-
servation planning; mapping outputs aim to characterize
the whole of the study area; and there is a potential for
these mapped outputs to be integrated with spatially ex-
plicit biophysical data for use within SCP (e.g., Zonation
[Moilanen et al. 2011)).

Three broad methods for eliciting social data are com-
monly used for deriving elicited SRS data: PPGIS, choice
experiments, and standard survey methods. The PPGIS
is a suite of techniques for engaging local communi-
ties through the use of a GIS whereby participants lo-
cate points or regions on maps describing values related
to conservation outcomes (Brown 2012). In contrast, a
choice experiment is a survey technique where respon-
dents are asked to choose between different bundles of
(environmental) goods, which are described in terms of
their attributes, or characteristics, and the levels that
these attributes take (Hanley et al. 1998; Adamowicz
2004). By a standard survey we mean commonly applied
methods of eliciting information through questionnaires
or interviews.

A range of geospatial and statistical methods can
be used to spatially project elicited social data for
integration with biophysical data (Table 1). These
methods have been used to map social data including the
perceptual values individuals associate with landscapes
(e.g., Campbell et al. 2009; Raymond et al. 2009)
and stated preferences which describe the preference
for products and services such as willingness to pay
(WTP), collaborate, or sell for conservation (e.g., Knight
et al. 2010; Curran et al. 2012). Spatial layers using
data of perceptual values are produced using a range of
processing methods based on geographic units defined
either by a raster grid or areal boundary (Table 1 &
methods 2 and 4). In contrast, stated preferences in some
cases requires no geospatial processing as individual
social data are linked directly to their spatial locations
(such as owners properties) (Table 1 & method 1).
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Stated preferences may also require interpolation to map
preferences in areas where there is no data. This is done
using a range of statistical methods such as predictive
(e.g., Brouwer et al. 2010) (Table 1 & method 3) and
Kriging (e.g., Campbell et al. 2009) (Table 1 & method 5).

Typology for Assessing SRS Data Uncertainty

We developed a typology for assessing SRS data uncer-
tainty by synthesizing insights from the social science
and spatial science literatures with respect to the range
of geospatial methods used for deriving these data and
integrating the data within analysis. The typology de-
scribes uncertainties associated with: the collation and
interpretation of social data; the projection of social data
spatially; and the integration of elicited SRS data with
other data sources such as biophysical data.

The many different forms of uncertainty in the social
sciences have been eloquently categorized in a paper
by Haslam and McGarty (2001) into internal and exter-
nal methodological uncertainties (Table 2), in addition
to statistical uncertainty. Internal methodological uncer-
tainty is related to whether an observed effect has been
correctly measured and interpreted (Hair et al. 2009) and
depends on face validity, content validity, and construct
validity (Table 2). External methodological uncertainty
arises when researchers are unsure whether results can
be generalized to the wider population of interest. It
requires a consideration of the sampling strategy, sam-
ple size, representativeness of the sample, and associated
nonresponse bias. A more detailed discussion of social
survey methods uncertainty and methods to address it
are in Supporting Information.

‘When projecting social data spatially, the methodologi-
cal uncertainty associated with social surveys can be con-
sidered in the same way as data accuracy within spatial
models in terms of uncertainty propagation. Social survey
data accuracy can be measured as the deviation from the
true value (e.g., the deviation from the correct value of
WTP estimated for an individual on a property). Data ac-
curacy is a general aspect of a suite of uncertainty sources
known as data quality (Devillers & Jeansoulin 2010; Shi
2010). Data quality considerations include, but are not
limited to: completeness, logical consistency, positional
accuracy, temporal accuracy, thematic accuracy, cover-
age, lineage, accessibility, and interpretability (Aspinall
& Pearson 1996; Devillers & Jeansoulin 2010; Shi 2010).
Uncertainty associated with data quality has unique char-
acteristics when considered in space. For example, as
error is spatially distributed across the landscape, it can
magnify when combined with other data or when used in
a model (Congalton 1988; Heuvelink et al. 1989; Gergel
et al. 2007).

Sources of uncertainty that are specific only to spa-
tial data principally arise from the modifiable areal unit

1501

problem (MAUP) (also known as the zoning effect or
scaling problem) and the related ecological inference
problem and change of support problem (COSP) (Open-
shaw 1984; Gotway & Young 2002) (Table 3). The
MAUP results from the many ways in which nonover-
lapping spatial units can be used to divide a study area
for the purposes of analyses such as a raster grid or
census district boundaries (Openshaw 1984). Although
COSP is a broader term referring to changing the types,
size, and shape of the spatial units within any single
study, for example, point, lines, areas, and pixel (Dungan
et al. 2002; Gotway & Young 2002). The ecological
inference problem (also known as the ecological fallacy)
is a specific case of the COSP that is the result of mak-
ing conclusions about individuals based only on analy-
sis of aggregated data (e.g., at the district level) (King
1997). Whenever social survey data is projected spatially
the choice of spatial units in terms of their size and
shape (e.g., property boundary, grid cell, catchment) and
the relationship with the spatial patterns of the so-
cial value or perception being represented will im-
pact on spatial analysis and in some cases render
the outputs meaningless (Openshaw 1984; Jelinski &
Wu 1996; Wu et al. 1997; Lechner et al. 2012b).
In any single analysis, there will be multiple poten-
tial sources of the COSP (which includes the MAUP
and the ecological inference problem) and data qual-
ity associated uncertainty which together affect both
modeling and inference undertaken with the data
(Gotway & Young 2002). An extended discussion of
COSP and data quality uncertainty and methods to ad-
dress them is in Supporting Information.

When using elicited SRS data for conservation plan-
ning, other types of data such as biophysical data (e.g.,
land cover and species distributions maps and spatial
information on threats and costs) are required and all
contain uncertainty. In the case of species’ distribution
modeling, uncertainties originate from both input data
and the process of mapping the species distributions
(Elith et al. 2002; Rocchini et al. 2012). Along with SRS
data uncertainty, these other sources of uncertainty need
to be addressed when conducting analysis.

Based on the geospatial, ecological, and social science
literature we have devised a typology that describes the
propagation and sources of uncertainty resulting from
projecting elicited SRS data spatially and utilizing it within
an analysis (Fig. 2). Uncertainty first arises in the social
survey data due to methodological uncertainty (nonspa-
tial uncertainty) (Fig. 2a). This social data can then be
used in a broad range of ways to map elicited SRS data
resulting in uncertainty being propagated to other parts
of the analysis. The simplest way to use the social data is
to convert to a spatial unit based on the geolocation of the
social data (Table 1 & methods 1, 2, and 5). This results
in uncertainty taking on a spatial dimension, whereby un-
certainty can be treated as classification accuracy (Fig. 2b)

Conservation Biology
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Table 2. Types of social survey uncertainty.

Social Data Spatial Uncertainty

Tests to consider Tests to consider

Type of Means of in social values in stated
uncertainty Definition management studies (e.g., PPGIS) preference studies
Internal confidence that the research design controls, face validity, content face validity, content validity,
output shows what it including validity validity, construct construct validity, preference
is believed to show testing validity reliability uncertainty
External the confidence in the research design controls, sample strategy and size, preference uncertainty, sample
results being including validity representativeness, strategy and size,
generalizable testing concurrent validity, representativeness, concurrent

predictive validity validity, predictive validity,

hypothetical bias

Adapted from Haslam and McGarty (2001) (Supporting Information for extended discussion).

Table 3. Types of spatial uncertainty associated with elicited spatially referenced social (SRS) data.

Type of Potential methods
uncertainty Definition Source to consider
Accuracy difference between measured  social survey methodological simulate uncertainty in geographic units

value and true value

Change of support uncertainty due to the many
problem (COSP) ways of integrating different
types of spatial data

area to area—the modifiable
areal unit problem (MAUP)
(e.g., combining multiple
spatial data sets)

area to surface

uncertainty, statistical model
uncertainty

area to point—-ecological
inference problem

point to area

point to surface

based on uncertainty bounds from social
survey methodology or statistical model;
uncertainty quantified with statistical
model, for example, standard errors and
Bayesian approaches; variations include
Monte-Carlo methods, simulating the
spatial distribution of uncertainty and
local versus global sensitivity analysis

cross-classification with other variables,
Quadrat counts

dasymetric mapping, use of areal centroids

geostatistical methods such as kriging,
cokriging

areal interpolation, incompatible/misalig-
ned zones, pixel aggregation, Bayesian
areal regression models, multiscale
spatial tree models, hierarchical models

pycnophylactic interpolation

Supporting Information for extended discussion.

(e.g., transcription error). These uncertainties interact
with uncertainty that arises from data quality (e.g., tran-
scription error), choice of spatial units, and the method
for aggregating the data (e.g., average value for a raster
cell) (data quality and COSP) (Fig. 2b). Alternatively, so-
cial survey data uncertainty can affect the analysis as an
input into a statistical model when using other elicited
SRS data geospatial methods (e.g., Table 1 & methods 3
and 4). Regardless of how uncertainty arises in elicited
SRS data (Fig. 20), it will propagate when combined with
other forms of data and potentially interact if that data
also includes uncertainty (Fig. 2d). Additional error will
also arise in studies that use statistical analyses even if
the social data is 100% accurate due to sample error,
model choice, generalizability, etc. We did not consider
the mechanisms associated with a statistical analysis be-
cause these forms of uncertainty are common to most
scientific studies. All the uncertainties associated with
the production and analysis of elicited SRS data will be
present in the final modeling or mapping output used in
conservation planning (Fig. 2e).

Conservation Biology
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Review of Elicited SRS Data Literature

We reviewed a subset of the literature on elicited SRS
data in order to summarize what social data is being
mapped and the geospatial methods used and assess
whether uncertainty is being addressed. We identified
16 papers in our systematic review as meeting the crite-
ria for elicited SRS data described above from a Web of
Science keywords search (“conservation planning” OR
“systematic conservation planning” OR “spatial priori-
tization”) AND Topic = (“willingness to sell” OR “will-
ingness to participate” OR “willingness” OR “conserva-
tion opportunity” OR “social value” OR “preference”)
we conducted in October 2013. We also asked partici-
pants attending a workshop on conservation opportunity
to identify potential papers (Supporting Information for
full description). The studies reviewed included a broad
range of conservation objectives, methods, and environ-
ments. Conservation objectives included improving wa-
ter quality (Brouwer et al. 2010), managing ecosystem
services (Bryan et al. 2010), and designing protected area
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Figure 2. Conceptual diagram describing the steps in the processing and analysis of elicited spatially referenced
social (SRS) data and otber forms of data (e.g., SDM, species distribution model) and the propagation of
nonspatial methodological uncertainty and spatial uncertainty (COSP, change of support problem; MAUP,
modifiable areal unit problem). Uncertainty propagation can be tested in the production of elicited SRS data and
Jor the outpuis of a spatial analysis for conservation planning.

networks (Guerrero et al. 2010) (Table 4) and included
a range of environments including both terrestrial and
marine. Social data were gathered using interviews, mail
surveys, and Web-based surveys with sample sizes rang-
ing from 29 (Curran et al. 2012) to 766 individuals
(Campbell et al. 2009) (Table 4) and response rates,
where reported, (10 of 16 studies) ranged from 11.6%
to 100%. The size of the study areas ranged from small
local scale (Curran et al. 2012) to country-wide (Campbell
et al. 2009).

We categorized the studies into 3 groups based on
use of similar social survey and geospatial methods. The
first group was individual property owners, in which
the likelihood of undertaking a conservation related ac-
tion on the respondent’s property was measured directly
(Table 4 & Geospatial method-Areal data descriptive in-
dividual’s property) based on “willingness to steward”
(Pasquini et al. 2010) or “willingness to sell” (Knight
et al. 2010). These studies commonly used interview
survey techniques with small sample sizes (n = ~50)
but with large response rates (89-100%), indicating high
or complete coverage of the relevant stakeholders. The
second group of studies was the choice survey group,
which included only 2 studies (Campbell et al. 2009;
Brouwer et al. 2010). They both attempted to measure

the likelihood of paying for conservation actions with
choice survey methods. This group included the 2 largest
sample sizes (n = ~700), which reflects the large data
requirements for this experimental approach. The third
group was the PPGIS group and included 9 out of 16 stud-
ies. They measured collective perceptions of biological
importance (or value) (Brown et al. 2004; Raymond et al.
2009; Whitehead et al. 2014). These studies were com-
monly undertaken at the regional scale involving large
sample sizes (n = 54-500) with moderate response rates
(11.6-100%) and used PPGIS methods (Table 4).

The geospatial methods used in each study were in-
fluenced by the method used to gather social data and
by the size of the study area because it is impractical for
studies that occur over large areas to sample the total
population. The most common geoprocessing method
was based on PPGIS (9 out of 16 studies) (Table 4). These
PPGIS studies assumed that collective measures of com-
munity perceptions of biological importance (or value),
or threats to values, were directly related to conserva-
tion actions. Our review also included 2 examples where
statistical methods were applied to mapping social data.
Brouwer et al. (2010) used a statistical model to assess
WTP for water quality improvements for subbasins across
a river basin, whereas Campbell et al. (2009) used the

Conservation Biology
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geostatistical Kriging techniques to interpolate between
sampled locations to produce a WTP for landscape im-
provement surface.

Social Survey Uncertainty

Two-thirds of the studies reviewed (69%) conducted
some kind of assessment of social data uncertainty
(Table 4 & Fig. 2a), however, the type of tests used
differed between studies. Most commonly, studies with
large sample sizes (PPGIS group) but low to moderate
response rate assessed the representativeness of the sam-
ple size used. Alternatively, those studies that had small
sample sizes (individual property owners group) but com-
plete coverage of the targeted group (e.g., total sample)
such as Curran et al. (2012) and Knight et al. (2006)
tested for internal methodological uncertainty such as
construct validity (extent to which a test measures what
it is designed to measure) and reliability. Such analyses
enabled the systematic identification of different dimen-
sions of conservation opportunity, with the view toward
applying and externally validating them in other study
areas. In these studies there is no need to test for sample
bias or representativeness as it is assumed that the total
population has been sampled (e.g., all relevant landhold-
ers). These smaller studies also tended to have a larger
number of response variables derived from long question-
naires and thus have more options for testing construct
validity. For example, Knight et al.’s (2010) questionnaire
had 165 questions that were then reduced to 12 factors.
The PPGIS and choice survey studies had a greater
range of uncertainty sources because they did not sample
the total population and because they aggregated data
unlike the individual property owners group. The PPGIS
and choice survey studies commonly tested for exter-
nal methodological uncertainty such as respondent bias.
However, they did not test for internal methodological
uncertainty (such as construct validity), most likely due to
the paucity of response data (e.g., short questionnaires)
that is a result of the practical difficulty in gathering
more data using this method. For example, PPGIS tech-
niques are commonly conducted at the regional scale
and are more time consuming because survey respon-
dents are asked to plot their values on a map. In contrast,
the individual property owners group is likely to be more
robust to internal methodological uncertainty because
this method commonly uses a total sample and has longer
questionnaires (describing multiple constructs with re-
dundant questions for the same construct); however, due
to small sample sizes and small extents this method will
have external methodological uncertainty related to the
difficulty in generalizing outside the study area.

Spatial Uncertainty

Uncertainty associated with the creation of elicited SRS
data is dependent on the spatial data types and process-
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ing methods used—specifically point data inputs repre-
sented spatially as areal data (Table 1 & methods 2, 4,
and 5) and areal data derived from statistical analysis
(Table 1 & method 3). For geospatial method 1 (Table 1),
individual social data are linked to property locations
and the sources of spatial uncertainty are likely to be
insignificant. In contrast, PPGIS methods often start as
social value data associated with a point location, which
are then aggregated to a grid. Each geospatial process has
the potential for uncertainty (Table 3 & Fig. 2b).

In contrast to social data uncertainty only 2 out of 16
studies tested for spatial uncertainty (Table 4). Raymond
and Brown’s (2006) PPGIS study assessed differences in
the outcome of their analysis depending on whether a
vector or raster model was used to aggregate the data—
an example of testing for issues resulting from the MAUP
(and thus the COSP). Campbell et al. (2009) assessed the
error of the Kriging estimates, a common output pro-
duced using this type of analysis. The group individual
property owners is likely to be relatively unaffected by
spatial error such as those associated with the COSP be-
cause individual respondents provide information about
their own property. The COSP does not pose a problem
because no aggregation takes place, but there is potential
for data quality uncertainty.

Uncertainty Propagation

No study attempted to understand how the uncertainty in
the SRS data propagated (Fig. 2c & 2d). This would have
affected all studies to varying degrees due to uncertainty
associated with combining elicited SRS data (Fig. 2¢) with
other spatial data (Fig. 2d). In many cases, social data were
integrated with biophysical data (such as biodiversity sur-
rogates) through overlaying both data sets and identifying
patterns in the overlap between biophysical values and
social values for conservation. Integration with SCP tools
was undertaken in 4 of the papers reviewed including
one PPGIS study and 3 individual property owners group
study (Table 4). In each of these cases uncertainty was
not tested.

Framework for Managing Uncertainty

Based on the typology of elicited SRS data uncertainty
and the literature review, we propose a framework for
more effectively managing uncertainty in the production
and use of elicited SRS data. Our framework describes a
process that can account for the range of geoprocessing
methods and social data types discussed here, but we
acknowledge that the technical methods for the manage-
ment of uncertainty is often context specific and data
dependent.

Our framework presents 2 possible pathways for ad-
dressing uncertainty. The first pathway describes the
most common currently used approach for addressing
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Figure 3. Process for addressing uncertainty in elicited spatially referenced social (SRS) data: (a) current method
used in producing elicited SRS data and (b) suggested method for dealing with uncertainty (COSP, change of

support problem; MAUP, modifiable areal unit problem).

uncertainty (Fig. 3a), but for the second pathway we
propose a new method based on integrating existing
geospatial methods for addressing social survey uncer-
tainty (Fig. 3b). The current standard practice in social
science is assessing fitness for use for methodological
uncertainty as opposed to quantifying uncertainty and
deriving estimates of its distribution (Fig. 3a). The fitness
for use method rejects data if not up to a standard. In
cases where data are not fit for use, more data are ac-
quired or research questions may be abandoned. Even if
some uncertainty is observed (but not beyond levels that
is considered unusable), the data are, in most cases, used
as if they were 100% accurate (Fig. 3a). The assessment
of the levels of uncertainty that are appropriate is also
generally expert based.

There were no examples in the papers we reviewed
where the uncertainty in the social survey was car-
ried over into analysis. Yet, two-thirds of the papers
reviewed described some kind of assessment of social
survey methodological uncertainty (Table 4). This sug-
gests those papers assessed fitness for use but ignored
social survey uncertainty when projecting the social data
spatially or when using the projected data in further
analysis. Furthermore, the standard method for produc-
ing and analyzing elicited SRS data issues in most cases
failed to account for any forms of spatial uncertainty such
as data quality, the COSP, and uncertainty propagation
(except for 2 of the papers reviewed).

Our proposed process requires that social survey
methodological uncertainty are quantitative (Fig. 3b)
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rather than only an assessment of fitness for use. This
will require social scientists to build on existing methods
for assessing fitness for use and explicitly quantify un-
certainty. There is a need to derive reasonable estimates
on the bounds of uncertainty when using social science
survey methods. As such, social survey uncertainty can
be interpreted as a form of data accuracy that can be
quantified and addressed using a number of existing
methods within the spatial sciences such as sensitivity
analysis. Importantly, the quantification of uncertainty
allows us to explicitly account for it in conservation plan-
ning (Carvalho et al. 2011; Williams & Johnson 2013) and
therefore provides substantial advantages over the fit for
use approach.

Along with the quantification of social survey method
uncertainty, there is a need to address the COSP because
all spatial processing methods we identified (especially
processing methods 2-4) (Table 2) were commonly pro-
jected spatially with arbitrary geographic units that were
not statistically determined (administrative boundaries,
catchment boundaries). Uncertainty can then propagate
as a result of projecting the social survey data spatially
(Fig. 2 & arrow B) and from combining it with other
data sets that also contain uncertainty (Fig. 2 & arrow
A). Figure 3 suggests that social survey uncertainty needs
to be tested in conjunction with the COSP effects as
this form of uncertainty will potentially magnify existing
uncertainties. Uncertainty also increases with the number
of input data sets and the complexity of models. Finally,
along with the output maps of social values or conser-
vation priorities, there needs to be a corresponding map
that describes the spatial distribution of uncertainty.

Quantifying Uncertainty in Social Data

In the social sciences, no procedures have ever been
agreed upon for measuring or estimating methodological
uncertainty; however, a lot is known about how to mini-
mize methodological uncertainty (see above and Support-
ing Information). For example, internal methodological
uncertainty can be addressed through appropriate vali-
dation of measures whereas external methodological un-
certainty can be reduced through appropriate sampling
and the development of social science theory. Figure 3
clearly illustrates the need for the employment of specific
tests of internal and external methodological uncertainty
on the social data to derive the quantitative estimates
that can be assessed within an analysis using accuracy
assessment methods. The development of these methods
is a fertile ground for further research and will allow
for the quantification of uncertainty arising from these
sources.

Estimating and Addressing Uncertainty

Depending on the social data, biophysical data, and
geospatial methods, there are numerous approaches for
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addressing uncertainty. Methods for addressing specific
forms of uncertainty are outlined in Supporting Infor-
mation; however, a common method for quantifying
all forms of uncertainty involves testing the contribu-
tion of varying model inputs (such as mapped data
layers) to variation in the model output, known as sensi-
tivity and uncertainty analysis. These methods can be
used for testing all forms of mapping and modeling
uncertainty (Crosetto et al. 2000). A common approach
for spatial data is to use Monte Carlo simulation methods
whereby each uncertainty source is treated as having a
probability density function (PDF) with a known mean
and variance for each spatial object (e.g., point, pixel or
area), then values are randomly drawing from the PDF
and the analysis is rerun with different values for each
spatial object to produce confidence bounds (Burrough
& McDonnell 1998). Variations on this method include
testing for the interaction of uncertainty sources (Saltelli
& Annoni 2010) and modeling error in more realistic
ways by incorporating the spatial distribution of error
(Congalton 1988; Heuvelink 2002). Such methods could
be used to develop confidence bounds for social data
prior to integration with biophysical data. The inclusion
of quantified social uncertainties through this method
(or similar) within elicited SRS data analysis is the fun-
damental difference between current approaches used
in the studies we reviewed and our proposed approach
(Fig. 3).

Testing for the COSP sensitivity in the creation of
elicited SRS data or combining elicited SRS data within
a model can be achieved by simulating multiple zoning
and scale configurations. This method is a useful first step;
however, it is difficult to test for the COSP in a probabilis-
tic way because there are infinite ways to modify spatial
boundaries or aggregate data, thus more sophisticated
approaches may potentially be used. Testing for this kind
of uncertainty should be done for most elicited SRS map-
ping tasks (except for individual property data) and for
all studies that integrate these data with biophysical data.

In many cases, complex methods will be required if
a sensitivity analysis demonstrates high levels of scale
dependent uncertainty. Some of these methods for ad-
dressing uncertainty are specific to one of the 4 different
geospatial processing methods and some are more gener-
ally applicable. A summary of potential methods that can
be applied for addressing specific kinds of the COSP can
be found in Table 4 and Supporting Information. These
methods range from geostatistical treatments (Gotway
& Young 2002) to use of cross-classification with other
sociodemographic variables (e.g., sex, race) to address
the ecological inference problem (King 1997).

Implications of Uncertainty

In conservation, decisions need to be made even when
uncertainty is large. Yet, if these uncertainties can be
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quantified, decision theoretic approaches can be used to
deal with them. Building on previous enquiry (Burgman
et al. 2005), we argue the explicit treatment of spatial
uncertainty in SRS data needs to become routine and
should use the approach outlined in Fig. 3(b) instead of
the current fitness for use approach (e.g., Fig. 3a). The
choice of the methods used for including social data and
assessing uncertainty within conservation planning will
depend on resources, the complexity of the study area,
and its size. However, addressing spatial uncertainty and
uncertainty propagation is rarely undertaken and can be
challenging for workers without significant expertise in
GIS, statistics, and writing source code (Heuvelink 2002;
Devillers et al. 2010). For example, it is rare for a map
to explicitly represent uncertainty in spatial data (Schmit
et al. 2006). The difficulty of addressing uncertainty is
compounded by numerous forms of uncertainty that have
been identified, making it challenging to analyze the con-
sequences of each (King et al. 2004; Chen 2008; Devillers
et al. 2010; Lechner et al. 2012a).

Uncertainty associated with SRS data should be rigor-
ously assessed to ensure that the benefits of including
social data into conservation planning outweigh the im-
pact of adding additional sources of uncertainty. Existing
literature on SCP indicates that the most variable data
included will tend to drive the conservation priorities
identified and this is most commonly the socioeconomic
data (Ferraro 2003; Bode et al. 2008). However, given
that existing uncertainties associated with spatial data as
SCP inputs are often not adequately dealt with (Visconti
et al. 2010; Langford et al. 2011), it is important to weigh
up the benefits and costs of incorporating this uncertain
SRS data into conservation planning (Tulloch et al. 2014
[this issue]).

Value of information theory can be used to explicitly
evaluate the degree to which the current SRS data (or
additional SRS data) will reduce uncertainty and improve
conservation decisions (Raiffa & Schlaifer 2000; Yokota
& Thompson 2004; Forsberg & Guttormsen 2006). So-
cial data are collected with the expectation they will
reduce uncertainty about cost, feasibility, and opportu-
nities. However, if cost of collecting that data exceeds
the value of that information because uncertainty levels
are high, it may be better to not invest in that social data.
Quantifying uncertainty in SRS data and then undertaking
a value of information analysis can help us make this de-
cision from a conservation planning perspective. Most of
the papers in the peer reviewed literature on SRS data are
theoretical in nature, and it is not yet possible to assess
whether the inclusion of social data have made planning
more implementable.

‘When seeking to apply the uncertainty measurements
derived from the process outlined in Fig. 3(b), conser-
vation planners should consider how this uncertainty
intersects with biological priorities. It is useful to con-
sider SRS data uncertainty through a framework of error
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types analogous to Type I and Type II statistical errors.
Type I errors (false positives) occur when SRS data indi-
cate that conservation actions are feasible, when in fact
they are not. Type II errors (false negatives) occur when
SRS data indicate that conservation actions are not fea-
sible, when in fact they are. Uncertainties that result in
false negatives are more costly in terms of unsuccessful
conservation actions, especially in areas of high biological
priority. False positives may conversely result in ineffi-
cient use of resources. Conservation practitioners should
therefore prioritize ground truthing to account for the
likely impacts of these different types of errors and be
guided by spatially explicit maps of SRS data uncertainty
(Fig. 3b).

It is also important to compare alternative approaches
to including the social dimension of conservation plan-
ning such as land use modeling and participatory
approaches (Fig. 1). Participatory approaches to conser-
vation planning may explicitly account for social values
in conservation as a substitute for a spatial analysis where
the focus is on the decision making process and building
relationships rather than a final output from a model.
For example, collective bargaining of the final location
of protected areas (e.g., Game et al. 2011) may be a
more effective way to ensure protected areas are im-
plemented than selecting areas based on their predicted
social acceptability (e.g., quantifying willingness to pro-
tect). However, this type of participatory planning may
not be realistic for larger planning regions, where the
number and diversity of stakeholders may make it too
difficult to negotiate consensus.

Future Research

The inclusion of elicited SRS data in conservation plan-
ning is a new and promising area of research that allows
conservation planners to consider conservation opportu-
nity. However, the dynamic nature of social systems, in-
cluding their susceptibility to external shocks, can result
in high level of uncertainty in SRS data, as we show here.
Although ecological systems are also dynamic, social sys-
tems have the potential for very rapid change, for ex-
ample, when new information becomes available. When
combining SRS data and biophysical data, the potential for
uncertainty propagation is very real. Failure to explicitly
account for this uncertainty could result in erroneous
conservation priorities and feasibility of implementation
could be reduced, counter to the desired outcomes from
inclusion of the SRS data. Our typology for assessing SRS
data uncertainty and the process we devised for more
effectively managing uncertainty issues in conservation
planning studies begin to address these concerns. Future
research should explicitly consider whether inclusion
of elicited SRS data has achieved desired outcomes of
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making conservation planning more implementable or if
uncertainty outweighs the benefits of including SRS data.
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